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The minimal function and its minimal principle employed in the traditional

Shake-and-Bake algorithm rely on the probabilistic estimates of the cosines of

the structure invariants. In this paper, a novel statistical approach to the phase

problem, which utilizes statistical properties of the structure invariants, is

proposed. The statistical maximal function and its maximal principle are

formulated, and the corresponding statistical Shake-and-Bake algorithm and its

associated statistical parameter-shift procedure are proposed and tested. The

test results show that the statistical approach to the phase problem is a simple,

reliable, less computationally intensive and more ef®cient procedure for phase

determination in X-ray crystallography.

1. Introduction

The phase problem of X-ray crystallography may be de®ned as

the problem of determining the phases of the structure factors

from measurements of intensities alone. The phase informa-

tion, which is lost in the diffraction experiment, is in fact

recoverable from the measurable intensities. The methods

devised to achieve this goal are known as direct methods.

1.1. Algebraic background

If H is an arbitrary reciprocal-lattice vector, then the

structure factor FH and the normalized structure factor EH are

de®ned by

FH � jFHj exp�i�H� �
PN
j�1

fj exp�2�iH � rj�; �1�

EH � jEH j exp�i�H� � FH=hjFHj2i1=2; �2�
respectively, where N is the number of atoms in the unit cell, fj

and rj are the scattering factor and the position vector of the

jth atom. Since the position vectors depend on the choice of

the origin, the phases are also origin dependent. Certain linear

combinations of the phases, the structure invariants, are

uniquely determined by the structure and are independent of

the choice of the origin (Hauptman & Karle, 1953). The most

important of these invariants are the triplets

�HK � �H � �K � �ÿHÿK; �3�
along with their associated parameters AHK, de®ned in the

equal-atom case by

AHK � 2Nÿ1=2jEHEKEH�Kj: �4�
David Sayre, using his algebraic `squaring' method, which

exploits the connection between a crystal structure factor and

its squared structure factor, derived the famous Sayre equa-

tion (Sayre, 1952),

FH � �V�H�ÿ1
P�1

K�ÿ1
FKFHÿK; �5�

where V is the volume of the crystal unit cell and �H , in the

equal-atom case, is the ratio of two scattering factors between

the `squared' structure and the structure itself. This equation

explicitly reveals the algebraic relationship among the triplets

via measured diffraction intensities.

1.2. Probabilistic background

In the probabilistic approach to the phase problem, the

atomic position vectors r of the atoms in a crystal are assumed

to be random variables, uniformly and independently

distributed in the unit cell. The normalized structure factors E,

as functions of the atomic position vectors r, are themselves

random variables. The standard theory of mathematical

probability is applied to derive (i) the probability distributions

of the structure invariants, and (ii) the conditional probability

distributions of the structure invariants, given well de®ned sets

of measured intensities.

The conditional probability distribution, P��jAHK�, of the

triplet �HK , given AHK , is known to be

P��jAHK� � �2�I0�AHK��ÿ1 exp�AHK cos ��; �6�
where I0 is the modi®ed Bessel function of zero order. From

(6), it readily follows that the conditional expected value of

�HK is zero. Thus, an estimate of

�HK � �H � �K � �ÿHÿK � 0 �7�
is valid provided that the values of AHK are large.

1.3. The tangent formula

The ®rst application of the probabilistic approach to the

phase problem is the tangent formula (Karle & Hauptman,

1956),
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tan��H� �
P

K WHK sin��H � �HÿK�P
K WHK cos��H � �HÿK�

; �8�

where WHK are appropriate weights. The tangent formula,

together with its modi®ed forms, represents the earliest

development of the probabilistic approach to the phase

problem and demonstrates the power of probabilistic methods

on which the direct methods of phase determination are

primarily based.

1.4. The minimal principle

As N increases, AHK decreases and the estimate (7) is no

longer valid. This limitation has motivated the formulation of

a least-squares minimal principle (Debaerdemaeker &

Woolfson, 1983) involving the cosine of the structure invari-

ants instead of the structure invariants themselves. The

conditional expected value of this cosine is:

hcos �HKjAHKi � I1�AHK�=I0�AHK�; �9�
where I1=I0 is the ratio of the modi®ed Bessel functions of the

®rst and zeroth order (Cochran, 1955).

The phase problem is formulated as a problem in

constrained global minimization, the constraints arising from

identities among the phases that must, of necessity, be satis-

®ed. The commonly used cosine minimal function (DeTitta et

al., 1994),

R��� �
�X

H;K

AHK

�ÿ1 X
H;K

AHK

�
cos��HK� ÿ

I1�AHK�
I0�AHK�

�2

; �10�

measures the mean-square difference between the current

values of the cosine structure invariants, cos��HK�, and their

conditional expected values. It is expected that the minimal

function (10) reaches its constrained global minimum when all

the phases are equal to their true values for any choice of

origin and enantiomorph (the minimal principle). However,

the complexity of the resulting phase estimation problem is

signi®cant because of the existence of multiple local minima

owing to the presence of the trigonometric functions. This may

severely reduce the radius of convergence of equation (10)

and increase the dif®culty of reaching the constrained global

minimum.

2. Statistical approach to the phase problem

In this paper, a novel statistical approach to the phase problem

is presented. Unlike the probabilistic approach described in

the previous section, the statistical approach utilizes statistical

properties of the structure invariants themselves instead of the

probabilistic estimates of the cosines of the structure invari-

ants.

In order to study statistical properties of the structure

invariants of crystal structures, a number of known structures

are chosen as targets. A random-number generator is used to

assign uniformly distributed errors to the triplet phases in such

a way that sets of triplets are created having the desired mean

phase error (MPE), where MPE is the average phase differ-

ence between the current phase set and the phase set obtained

from the ®nal re®ned model structure. For each structure,

several different sets of phase values are generated with

various MPE values. For each generated phase set, the

following steps are taken to create a discrete distribution

function of the structure invariants:

1. Re¯ections are sorted in decreasing order of jEjs, and a

predetermined number of the top re¯ections are selected to

generate a predetermined number of structure invariants

having the largest AHK values.

2. The structure invariant interval of [ÿ180�; 180�] is

partitioned into a predetermined number of equal subinter-

vals.

3. The value of each structure invariant is calculated and its

location (subinterval) is identi®ed.

4. The number of structure invariants in each subinterval is

tallied and then divided by the total number of the structure

invariants.

5. A discrete graph of the distribution of values of the

structure invariants is plotted based on the information

obtained from step 4.

It should be pointed out that the discrete distribution is a

function of all selected phases. When a particular phase value

changes, all triplet values associated with this phase will

change, the locations of the triplets will change, as will the

shape of the distribution function. Fig. 1 shows distributions of

values of triplets for Iled (Pletnev et al., 1980), an 84 atom

structure that crystallizes in space group P212121, as errors are

introduced into the values of the phases. The 840 re¯ections

having largest jEj values are chosen to generate 8400 triplets

having the largest A values. The triplet interval of

[ÿ180�; 180�] is partitioned into 90 equal subintervals. Five

Figure 1
Distribution of triplets for Iled. The black line in (a)±(d) represents
distribution of a phase set with MPE = 0�, the red line represents
distribution of a phase set with (a) MPE = 10.5�, (b) MPE = 32.4�, (c)
MPE = 56.4� and (d) MPE = 75.7�.



different sets of phase values (MPE � 0.0, 10.5, 32.4, 56.4 and

75.7�) are used to demonstrate ®ve different distributions: the

black lines (a)±(d) represent the distribution with MPE� 0.0�;
the red lines represent distributions with (a) MPE � 10.5�, (b)

MPE � 32.4�, (c) MPE � 56.4� and (d) MPE � 75.7�.
From Fig. 1, we observe that: (i) a large spike appears in the

middle of each of the distributions owing to the large number

of triplets having large A values and the property (7); (ii) when

the MPE is increased, the height of the spike is correspond-

ingly reduced, the middle portion of the distribution sinks, and

the two tails of the distribution rise. Although we present the

triplets distribution function for only one particular structure,

these observations are the common properties of a dozen test

structures consisting of centrosymmetric and non-centrosym-

metric structures and Se-atom substructures spanning

different sizes, resolutions and space groups. The basic struc-

tural information including structure name, number of non-H

atoms in the asymmetric unit (ASU), space group, resolution

and reference is listed in Table 1.

These statistical properties motivate us to de®ne a maximal

function as follows:

S��� � R�=2

ÿ�=2

D��HK� d�HK; �11�

where D��HK� is a triplet distribution function on �ÿ�; ��. S���
can also be interpreted as the area bounded by the triplet

distribution function D��HK�, x axis and lines x � ÿ�=2 and

x � �=2. Let I � [M
j�1Ij be a partition of �ÿ�=2; �=2�, Cj the

number of triplets whose values belong to Ij and C the total

number of triplets, then

S��� �
Z �=2

ÿ�=2

D��HK� d�HK �
XM

j�1

Cj

C
� CI

C
; �12�

where CI �
PM

j�1 Cj is the number of triplets whose values

belong to �ÿ�=2; �=2�.
Table 2 lists statistical maximal function values for selected

(sub)structures STR2, Iled and 1A7A. The phase sets with

different MPE (mean phase error) were generated using the

program SnB (Weeks & Miller, 1999a) and then used to

calculate S���. It is observed that, as expected, there is very

good correlation between the values of the statistical maximal

function S��� and the mean phase errors, i.e., the larger the

value of S���, the smaller the mean phase error. In fact, the

correlation coef®cients, between the values of the statistical

maximal function S��� and the MPE listed in Table 2, are

ÿ0:954, ÿ0:981 and ÿ0:974 for STR2, Iled and 1A7A,

respectively. In view of Table 2, one naturally anticipates that

the statistical maximal function, S���, reaches its constrained

global maximum when all phases are equal to their true values

for any choice of origin and enantiomorph (the statistical

maximal principle). If this hypothesis is true, then the phase

problem can be formulated as a problem of constrained global

maximization of the statistical maximal function S���. It is

worth pointing out that it is essential to ®nd the constrained

global maximum instead of the (unconstrained) global

maximum since the set of phases all zero would maximize S���.

3. Statistical Shake-and-Bake

It is one thing to formulate the phase problem as a problem of

constrained global optimization, it is quite another to actually

®nd the constrained global maximum. The Shake-and-Bake

algorithm (Miller et al., 1993; DeTitta et al., 1994; Weeks et al.,

1994), the most powerful direct-methods-based algorithm yet

devised, shows the way. Shake-and-Bake, the ®rst algorithm to

®nd the constrained global minimum of a probabilistically

de®ned minimal function, alternated phase re®nement in
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Table 1
Structure data sets used in this investigation.

Structure type Structure name or ID Atoms (ASU) Space group Resolution (AÊ ) Reference

Centrosymmetric STR1 27 C2=c 0.83 Camiolo et al. (2001)
STR2 37 P21=c 0.84 Zhuang et al. (2002)
STR3 46 P21=c 0.81 Alfonso & Stoeckli-Evans (2001)
STR4 75 P�1 0.84 Ohba et al. (2002)

Non-centrosymmetric Ph8755 74 P1 0.92 Marshall et al. (1990)
Iled 84 P212121 0.94 Pletnev et al. (1980)
F5 113 P212121 1.00 Pletnev et al. (1992)
Crambin 327 P21 0.83 Hendrickson & Teeter (1981)

Se±Met substructure 1JC4 24 P21 2.00 McCarthy et al. (2001)
1A7A 30 C222 2.80 Turner et al. (1998)
1L8A 40 P21 3.50 Arjunan et al. (2002)
1M32 66 P21 2.55 Chen et al. (2002)

Table 2
The statistical maximal function values for selected (sub)structures The
phase sets with different MPE (mean-phase-error) were generated by
SnB.

STR2 Iled 1A7A

MPE (�) S��� MPE (�) S��� MPE (�) S���
0.0 0.868 0.0 0.787 0.0 0.768

17.0 0.769 13.2 0.775 10.6 0.772
23.4 0.731 26.1 0.751 18.2 0.763
33.1 0.724 34.0 0.721 29.0 0.752
42.8 0.688 44.3 0.696 32.3 0.727
52.5 0.674 53.5 0.688 48.1 0.693
64.2 0.666 62.8 0.675 54.8 0.684
73.5 0.636 74.7 0.663 68.1 0.660
84.7 0.524 87.5 0.650 78.2 0.656
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reciprocal space with density modi®cation in real space to

impose constraints through a physically meaningful inter-

pretation of the electron-density function. Speci®cally, the

phase-re®nement portion of the Shake-and-Bake cycle utilizes

the technique of parameter shift (Bhuiya & Stanley, 1963) to

reduce the value of the minimal function [equation (10)]. The

Shake-and-Bake method, as implemented in the computer

program SnB (Weeks & Miller, 1999a), has successfully

provided ab initio solutions for structures containing as many

as 1200 independent non-H atoms (Deacon et al., 1998) as well

as for large substructures such as the 160-site selenomethio-

nine derivative of ketopantoate hydroxymethyltransferase

from E. coli (von Delft & Blundell, 2002).

The statistical parameter-shift procedure, a modi®cation of

the existing parameter-shift procedure (Chang et al., 1997)

implemented in Shake-and-Bake, is designed to take advan-

tage of the special properties of the statistical maximal func-

tion. The phases are sorted in decreasing order with respect to

the values of the associated jEjs, and initial values of phases

are calculated based on a trial structure having randomly

positioned atoms. When considering a given phase �H, the

values of the statistical maximal function [equation (12)] are

evaluated respectively with phases 'H � jS for j � 0; 1; . . . ;m,

where S is a predetermined phase shift (shift size) and

m � �180=S� (�x� is the largest integer whose magnitude does

not exceed the magnitude of x). Then the maximum of these

values of the statistical maximal function is found, and the

phase �H is updated to re¯ect that modi®cation. The consid-

eration of �H is complete, and statistical parameter shift

proceeds to the next phase. Re®ned phase values are used

immediately in the subsequent re®nement of other phases.

The notation STAT-PS�S; k� is used to denote the statistical

parameter-shift optimization of the statistical maximal func-

tion, using shift size S and k iterations (passes through the

phase set) of phase re®nement per Shake-and-Bake cycle.

Both traditional Shake-and-Bake (Weeks & Miller, 1999a)

and statistical Shake-and-Bake were applied to the 12 known

centrosymmetric, non-centrosymmetric structures and Se±Met

substructures listed in Table 1. For a Se±Met substructure

determination, the peak-wavelength anomalous scattering

data were used. A sample of 1000 randomly positioned

N�-atom trial structures (where N� is the number of inde-

pendent atoms in the asymmetric unit) was generated for each

data set. For each structure or substructure, the default values

of the important, size-dependent, SnB parameters are

summarized in Table 3. For traditional Shake-and-Bake, the

default parameter-shift procedure (Weeks & Miller, 1999b)

was applied and, for statistical Shake-and-Bake, the statistical

parameter-shift procedure STAT-PS(180�, 1) was used for

centrosymmetric structure determination, and STAT-

PS(60�, 3) was used for non-centrosymmetric structure and

Se±Met substructure determination.

The success rate reported in this paper is de®ned as the

percentage of trial structures that go to solution. When

performing post mortem studies using data for previously

known structures, a trial structure subjected to the Shake-and-

Bake procedure is counted as a solution if there is a close

match between the peak positions produced by Shake-and-

Bake and the true atomic positions for some choice of origin

and enantiomorph. Of course, in actual applications to

unknown structures, potential solutions are identi®ed on the

basis of objective function values. For traditional Shake-and-

Bake, potential solutions are identi®ed by the values of the

cosine minimal function [equation (10)] and, for statistical

Shake-and-Bake, potential solutions are identi®ed by the

values of the statistical maximal function [equation (12)].

Table 4 summarizes success rates obtained from both tradi-

tional and statistical Shake-and-Bake for the 12 structures

listed in Table 1.

4. Conclusions and discussion

The statistical maximal function and its maximal principle

have been formulated, and the corresponding statistical

Shake-and-Bake and its associated statistical parameter-shift

procedure have been proposed and tested. For ten out of

twelve test structures, the success rate from statistical Shake-

and-Bake is higher than that of traditional Shake-and-Bake.

The test results have con®rmed that the statistical maximal

principle is valid and statistical Shake-and-Bake is capable of

determining crystal structures including centrosymmetric,

non-centrosymmetric and heavy-atom substructures.

Table 3
Values of basic SnB parameters.

Structure Phases Triplets Peaks Cycles

STR1 400 4000 27 13
STR2 370 3700 37 18
STR3 460 4600 46 23
STR4 750 7500 75 37
Ph8755 740 7400 74 37
Iled 840 8400 84 42
F5 1130 11300 90 113
Crambin 3270 32700 100 300
1JC4 840 8400 28 48
1A7A 900 9000 30 60
1L8A 1260 12600 42 84
1M32 1980 19800 66 132

Table 4
Success rates obtained from traditional and statistical Shake-and-Bake.

Success rate (%)

Structure Traditional SnB Statistical SnB

STR1 1.0 1.8
STR2 4.9 5.9
STR3 1.7 2.5
STR4 1.4 0.8
Ph8755 54.0 60.3
Iled 4.3 5.0
F5 1.3 2.9
Crambin 3.2 2.8
1JC4 27.5 32.1
1A7A 3.9 7.8
1L8A 2.5 4.4
1M32 4.1 6.0



The statistical parameter-shift procedure employed in the

statistical Shake-and-Bake method is just one of many possible

reciprocal phase-re®nement procedures. Although this

procedure has not been optimized, the results based on the

success rate show that the statistical Shake-and-Bake

compares favorably with traditional Shake-and-Bake. We

believe that the potential of the statistical approach to the

phase problem has not yet been fully exploited. It is our

intention to optimize statistical Shake-and-Bake, particularly

the statistical parameter-shift procedure and its parameters,

such as shift size and number of iterations, to achieve the

maximal success.

The statistical maximal function is less computationally

intensive than the cosine minimal function. It does not require

the calculation of the trigonometric functions or the Bessel

functions. It also does not require the re-calculation of the

objective function at several different locations owing to the

phase shift during the parameter-shift procedure; once the

initial triplet value is calculated, then all triplet locations

owing to phase shift are automatically determined, so are their

contributions to the maximal function. Despite the reduced

computational intensity of the statistical maximal function, the

computing time of statistical SnB is almost identical to that of

traditional SnB. Owing to the greater success rate of statistical

Shake-and-Bake, the average time to solution with statistical

Shake-and-Bake is less than that of traditional Shake-and-

Bake.

Finally, the statistical maximal function can be easily

converted into a statistical minimal function by means of

1ÿ S���, where S��� is the statistical maximal function de®ned

by equation (12).

This research was supported by NIH grant GM-46733.
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